
Knowledge acquisition and learning in
unstructured robotic assembly environments

I. Lopez-Juarez a,*, M. Howarth b

a CIATEQ A.C., Centro de Tecnologia Avanzada, Manantiales 23A, Fracc. Ind. B.Q., CP 76246 El

Marques, Queretaro, Mexico
b Sheffield Hallam University, School of Engineering, Sheffield s1 1WB, England, UK

Received 4 July 2001; received in revised form 8 October 2001; accepted 28 November 2001

Abstract

Mechanical assembly by robots has traditionally depended on simple sensing systems

and the robot manufacturers programming language. However, this restricts the use of

robots in complex manufacturing operations. An alternative to robot programming is

the creation of self-adaptive robots based on the adaptive resonance theory (ART)

artificial neural network (ANN).

The research presented in this paper shows how robots can operate autonomously in

unstructured environments. This is achieved by providing the robot with a primitive

knowledge base (PKB) of the environment. This knowledge is gradually enhanced on-

line based on the contact force information acquired during operations.

The robot resembles a blindfold person performing the same task since no informa-

tion is provided about the localisation of the fixed assembly component. The design of a

novel neural network controller (NNC) based on the Fuzzy ARTMAP network and its

implementation results on an industrial robot are presented, which validate the ap-

proach.
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1. Introduction

Industrial robots are useful and reliable machines for assembly. The success
of the operation is based on the accuracy of the robot itself and the precise
knowledge of the environment, i.e. information about the geometry of the
assembly parts and their localisation in the workspace. Combining these el-
ements and using the manufacturers programming language efficient pro-
grams can be written. When parameters change, for instance part geometry,
the robot program has to be amended to take into account new conditions.
The adaptation to these new conditions is explicitly given by the programmer.
Industrial robots are currently being programmed using this technique, hence,
robots are still unable to be self-adaptive to varying conditions and this is
possibly one of the major drawbacks that has limited their extensive use in
manufacturing.

Techniques are sought to provide self-adaptation for robots. Robot ma-
nipulators operate in real world situations with a high degree of uncertainty
and require sensing systems to compensate from potential errors during op-
erations. Uncertainties come from a wide variety of sources such as robot
positioning errors, gear backlash, arm deflection, ageing of mechanisms and
disturbances. Controlling all the above aspects would certainly be a very dif-
ficult task, therefore a simpler approach based on force control is preferred. By
using force control the overall effect of the contact force between the envi-
ronment (assembly parts) and the manipulator are considered as a whole.

1.1. Force control, connectionist models and prior work

Force control can be roughly divided in Model-based and Connectionist-
based approaches. The model-based approach takes as much information of
the system and environment as possible. This information includes localisation
of the parts, geometry of the parts, materials, friction, etc. The connectionist-
based approach is based on connectionist models and its robustness relies on
the information given during the training stage that implicitly considers all of
the above parameters. Model-based methods do not offer a complete solution
due to the uncertainties associated during assembly as mentioned earlier. On
the other hand, connectionist-based techniques have proved to work reliably
when uncertainty is involved due to their generalisation property.

The use of connectionist models in robot control to solve the problem under
uncertainty has been demonstrated in a number of publications, either in
simulations [1–3], or being implemented on real robots [4–6]. In these methods,
reinforcement learning (RL), unsupervised and supervised type networks have
been used.

The reinforcement algorithm implemented by V. Gullapalli demonstrated to
be able to learn circular and square peg insertions. The network showed a good
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performance after 150 trials with insertion times lower than 100 time steps [7].
Although the learning capability demonstrated during experiments improved
over time the network is unable to generalise over different geometries. In-
sertion are reported with both circular and square geometries, however, when
inserting the square peg, its rotation around the vertical axis was restricted
otherwise the insertion would not have been possible. M. Howarth followed a
similar approach, using Backpropagation in combination with reinforcement
learning. During simulation it was demonstrated that 300 learning cycles were
needed to achieve a minimum error level with his best network topology during
circular insertions [6]. A cycle meant to be an actual motion that diminished the
forces acting on the peg. For the square peg, the number of cycles increased
dramatically to 3750 cycles. These figures are important, especially when fast
learning is desired during assembly. On the other hand, E. Cervera using SOM
networks and a Zebra robot (same used by Gullapalli) developed similar in-
sertions as the experiments developed by Gullapalli. Cervera in comparison
with Gullapalli improved the autonomy of the system by obviating the
knowledge of the part location and used only relative motions. However, the
trade-off with this approach was the increment of the number of trials to
achieve the insertion [4], the best insertions were achieved after 1000 trials.
During Cervera�s experiments the network considered 75 contact states and
only 8 out of 12 possible motion directions were allowed. For square peg in-
sertions, there were needed 4000 trials to reach 66% success of insertion and
that did not improve any further. According to Cervera�s statement, ‘‘We
suspect that the architecture is suitable, but the system lacks the necessary
information for solving the task’’. The situation clearly recognises the necessity
to embed new information in the control system as it is needed, which is likely
to be achieved with an architecture such as ART.

1.2. Original work

The objective of the research presented in this paper is to create self-
adapting robots able to perform mechanical assembly with a minimum of in-
structions and information. This is achieved by resembling the behaviour of a
blindfold person developing the operation. For a blindfold person the only
available information is the contact force while attempting to insert the
workpiece since the localisation of the parts is unknown. In addition, the other
basic information a person would possess in this situation is the information
stored in his/her brain on how to react to primitive constraint forces. In other
words, the intrinsic attitude of a person to react to a force that impedes the
insertion and by moving to the opposite direction.

In a similar way, the robot is provided only with contact force information
and a primitive knowledge base (PKB), which is an initial contact force–
action mapping that bias its initial reactions to constrained forces. No

I. Lopez-Juarez, M. Howarth / Information Sciences 145 (2002) 89–111 91



information is given about the localisation of the parts. The arm increases its
knowledge on-line based on the success of the predicted motion. The robot
actually increases and enhances its knowledge as the operation progresses.
The time that the robot takes to complete a similar operation is reduced and
also mistakes made earlier do not recur, which demonstrates the new expertise
of the robot.

The design of the novel neural network controller (NNC) is founded on the
strength of ART networks to learn incrementally. The new information is
acquired as the operation develops without affecting the knowledge that was
previously learnt. The Fuzzy ARTMAP algorithm is used and the NNC
training made on-line. The number of contact force patterns that the NNC
can accommodate in its knowledge is limited only to memory storage. The
switching mechanism of the NNC is regulated by the development of the op-
eration. New knowledge information is only accepted in the knowledge base
when it has strongly contributed towards the success of the assembly. The
resulting enhanced knowledge base (EKB) at the end of the assembly can be
used for similar operations. Results on an industrial robot demonstrates that
the robot�s skill improves effectively and the insertion times and the errors
diminish over time. Furthermore this is, to the best knowledge of the authors,
the first time the Fuzzy ARTMAP network has been applied to an industrial
robot manipulator.

2. Host–slave architecture

The hardware architecture is formed by the robot, slave computer, robot
controller, supervisory host computer and the Force/Torque (F/T) sensor as
illustrated in Fig. 1.

Main units of the robot system are the controller and the robot arm it-
self. Power and data are transmitted between the two units through two in-
terconnecting cables. The controller houses the components that control
and power the robot arm. The supervisory host computer communicates
with the controller via two serial ports: the ‘‘supervisory’’ mode in which
high-level commands are sent to the controller and the ALTER mode through
the slave computer for incremental fine motions. The ALTER mode infor-
mation handling is very strict since once the data interchange has been
started, the supply of motion requests by the computer must continue oth-
erwise an error message will appear and the communication will be termi-
nated.

The slave computer is a 486-based computer running under DOS. This
computer was used to release the host computer from the low-level commu-
nication with the robot controller. With this architecture, the host only needs
to request the motion to the slave computer and start a new process or monitor
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the F/T signal while the arm�s position is being modified. Both processes, force
monitoring and arm positioning, can be made in parallel and in real-time.

3. The problem and nature of forces

Fig. 2(a) shows a typical peg in hole insertion, which is the most common
operation in assembly and a canonical operation for performance assessment.
The force traces occurring during this type of operation are given in Fig. 2(b).

This type of signal is normally acquired by using a F/T sensor mounted in
the robot�s wrist. The sensor provides the required input information to the
NNC. The signal patterns contain information regarding the force and torque
‘‘felt’’ at the robot wrist. With this information is possible to determine how
much force is being applied to the end-effector or gripper 1 and how these

Fig. 1. Host–slave architecture.

1 The gripper is a mechanical device to grasp and hold the assembly part, which normally consist

of two or more fingers.
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forces affect the orientation of the peg by means of the moment value and sign.
Although the graph only shows the moment information, the information
available to the NNC is a F/T vector containing six elements, i.e. fx, fy, fz, mx,
my and mz.

4. Adaptive resonance theory

The adaptive resonance theory (ART) [8] was developed by Stephen Gross-
berg and Gail Carpenter at Boston University to solve the called stability–
plasticity dilemma. That is, the system is sensitive to novelty capable of
distinguishing between familiar and unfamiliar events (plastic) and still remain
stable. Different model variations have been developed to date based on the
original ART-1 algorithm for binary input patterns [9], ART 2-A for analogue
and binary input patterns [10], and ART 3 based on chemical transmitters.
Supervised learning is possible through ARTMAP [11] that uses two ART
modules and its variants, Fuzzy ARTMAP [12], Gaussian ARTMAP [13] and
ART-EMAP [14] even though there are many other variants adapted for
specific applications [15]. In the following section a brief explanation of the
mechanics of ART-1 and Fuzzy ARTMAP is given followed by the description
of the NNC.

4.1. ART-1

The ART-1 architecture consists of two parts: attentional subsystem and
orienting subsystem as illustrated in Fig. 3.

Fig. 2. (a) Peg-in-hole insertion and (b) contact froce.
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The attentional subsystem is made up of two layers of nodes F1 and F2. In an
ART network, information in the form of processing-element output rever-
berates back and forth between layers. If a stable resonance takes place
learning or adaptation can occur. On the other hand, the orienting subsystem is
in charge of resetting the attentional subsystem when an unfamiliar event oc-
curs.

A resonant state can be attained in one of two ways. If the network has
learned previously to recognise an input vector, then a resonant state will be
achieved quickly when that input vector is presented. During resonance, the
adaptation process will reinforce the memory of the stored pattern. If the
input vector is not immediately recognised, the network will rapidly search
through its stored patterns looking for a match. If no match is found, the
network will enter a resonant state whereupon the new pattern will be stored
for the first time. Thus, the network responds quickly to previously learned
data, yet remains able to learn when novel data is presented, hence solv-
ing the so-called stability–plasticity dilemma. The activity of a node in the
F1 or F2 layer is called short-term memory (STM) whereas the adaptive
weights are called long-term memory (LTM). Gain controls handle the dis-
crete presentation of the input signals. A vigilance parameter q measures
how much mismatch is tolerated between the input data and the stored
patterns, which can be used to control the category coarseness control of the
classifier.

Fig. 3. ART architecture.
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4.2. Fuzzy ARTMAP

In the Fuzzy ARTMAP (FAM) network there are two modules ARTa and
ARTb and an inter-ART module ‘‘Map field’’ that controls the learning of an
associative map from ARTa recognition categories to ARTb categories. This is
illustrated in Fig. 4.

The map field module also controls the match tracking of ARTa vigilance
parameter. A mismatch between Map field and ARTa category activated by
input Ia and ARTb category activated by input Ib increases ARTa vigilance by
the minimum amount needed for the system to search for, and if necessary,
learn a new ARTa category whose prediction matches the ARTb category. The
search initiated by the inter-ART reset can shift attention to a novel cluster of
features that can be incorporated through learning into a new ARTa recog-
nition category, which can then be linked to a new ART prediction via asso-
ciative learning at the Map field.

5. Neural network controller

The functional structure of the assembly system is illustrated in Fig. 5. The
FAM is the heart of the NNC. The controller includes three additional mod-
ules. The knowledge base that stores the initial information related to the ge-
ometry of the assembling parts. This information is used only during the first
assembly operation, later this is enhanced by patterns that favour the assembly
and whose inclusion is regulated by the pattern–motion selection module. This
module keeps track of the F/T patterns and verifies whether the action is good
enough to allow the FAM network to be retrained. If this is the case, the switch
SW is closed and the corresponding pattern–action provided to the FAM for
on-line retraining.

Future predictions will be based on this newly trained FAM network. The
Automated Motion module basically is in charge of sending the incremental

Fig. 4. Fuzzy ARTMAP architecture.
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motion request to the robot controller and handling the communication be-
tween the slave computer and the FAM network output. External components
to the NNC are the robot controller, the manipulator itself and the F/T sensor
that provides the pattern information. The programs for the NNC were created
using Visual C++ 5.0 and implemented in a 100 MHz Pentium PC.

5.1. Initial training and PKB formation

The formation of the PKB basically consists of showing the robot how to
react to individual components of the F/T vector. The influence of each vector
component requires a motion opposite to the direction of the applied force to
diminish its effect. The procedure is illustrated in Fig. 6. For simplicity, only
the lower arm of the manipulator has been shown.

Every motion of this type is referred to as a primitive motion (PM) and the
idea is to teach the robot where to move when single F/T components, i.e. fx,
fy, fz, mx, my, or mz are applied to the workpiece. Fig. 6(a)–(c) illustrate the
PM needed to diminish the corresponding constraint force in the X, Y or Z
axis. Note that in Fig. 6(c), when the arm is in free-space the PM will be in )Z
direction since this was the condition (minimum constraint forces) to proceed
downwards during this assembly operation. Generally speaking, the training
consists of moving the workpiece against a rigid object to produce the

Fig. 5. System structure.
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appropriate component force and consequently determine the corresponding
PM. The magnitude of the constraint forces applied to the workpiece is
bounded by the force limit selected in the NNC program. The PM corre-
sponding to the rotation in X and Y axis (Fig. 6(d) and (e)) were assigned after
rotating the arm in free-space at an angle so that a single mx or my component
was produced. The PM, Rz, was given to the network using a square peg into a
square hole producing a moment around the Z axis as illustrated in Fig. 6(f).

At this time and while the arm is in constraint motion, the F/T pattern will
be acquired in the knowledge base and will be associated with the selected
motion. The storage of the F/T vector and the PM will form the PKB that is
required to start the assembly for the very first time. Once the first insertion has
been completed, the robot may possibly have increased its knowledge. If so, the
PKB is enhanced and an enhanced knowledge base (EKB) version will be used
during the following insertion.

The PKB used during our experiments is shown in Fig. 7. The F/T data from
the sensor was scaled to the range ½0; 1�, where the extreme values 0 and 1
corresponded to a force of �15 and þ15 lb respectively. Negative values were

Fig. 6. Training procedure.

98 I. Lopez-Juarez, M. Howarth / Information Sciences 145 (2002) 89–111



assigned to the interval ½0; 0:5Þ and positive values were assigned to the interval
ð0:5; 1�. It should be noted that the origin in the graph is set to 0.5, where
positive and negative values are represented in the upper and lower halves of
the graph respectively. Every column corresponded to an input vector to the
network. The corresponding assigned output vector is shown at the top of the
graph for each pattern.

6. Knowledge discovery

The first stage of the NNC was initially implemented using the ART-1 net-
work in fast learning mode [9]. Results showed the incremental learning capa-
bility of the network by quickly acquiring the contact force patterns. However,
since the ART-1 network only takes binary values an encoding was necessary.
Information about initial results and details on the encoding can be founded in
[16]. With the use of supervised Fuzzy ARTMAP algorithm the NNC can now
take analogue values and provide the required prediction capability.

6.1. Pattern–motion selection and knowledge enhancement

There are potential problems associated with the learning mechanism which
are solved by the pattern–motion selection module. The robot should continue
moving in the insertion direction if, and only if, a minimum force value has
been reached. This situation should trigger the learning mechanism in order to
allow the acquisition and learning of the pattern–action pair that produced
such a situation. In the event of continual learning after having reached this

Fig. 7. PKB.
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point, the performance of the NNC might decay. This situation is similar to
what is known as overtraining, overfitting or overlearning in ANNs. At this
point the learning should be stopped because if the robot learns other patterns
under the above circumstances, eventually the minimum force value will be
different leading to wrong motions. The same applies to the condition when the
end-effector meets a force higher than the force limit. There should not be any
further learning during this situation since learning a higher force would
probably damage the sensor.

The above situations can be resumed in three fundamental questions:
1. What is a good motion?
2. How to recover from errors?
3. Which motions should or should not be learned?
Having an assembly system which is solely guided by contact force states, the
criterion to decide whether the motion was good enough to be learnt is based
on the following expression:

Fafter < 0:1 � Fbefore: ð1Þ
Fafter and Fbefore are computed using the following equation:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fx2 þ fy2 þ fz2 þ mx2 þ my2 þ mz2

p
: ð2Þ

Expression (1) means that if the total force after the incremental motion is
significantly reduced then that pattern–action will be considered good to be
included in the knowledge base. Experiments showed that if this threshold
value was set higher (i.e. P 0:3 � Fbefore) the network became very sensitive
and showed overtraining behaviour.

Forces that are higher than the value given by 0:1 � Fbefore and lower than
the Flimit are still good values. However, the corresponding pattern–action pair
will only be used during network recall. This situation is illustrated in Fig. 8
that shows three possible situations: learning, recall and error recovery.

The third area is a situation where F P Flimit. In this situation the user is
alerted and asked to reposition the arm.

There will be ambiguous situations in which learning should not be per-
mitted. This applies to patterns in the insertion direction (usually Z direction).
Consider downward movements in the Z) direction. At the time the peg makes

Fig. 8. Learning, recall and error recovery.

100 I. Lopez-Juarez, M. Howarth / Information Sciences 145 (2002) 89–111



contact with the female block, there may well be a motion prediction in the Z+
direction. This recover action will certainly diminish the contact forces and will
satisfy the condition given by the expression (1) in order to learn the force–
action pair. However, this situation is redundant since it was given when the
PKB was formed and it is likely that it will corrupt the PKB. Similarly, learning
should not be allowed when the arm is in free-space. In this situation, Fafter and
Fbefore will be very similar and again learning another pattern in the Z) di-
rection will be redundant. Both situations were tested experimentally by the
author and revealed that an unstable situation may appear if further learning is
allowed in the insertion direction.

After the pattern–action has satisfied expression (1) and the prediction di-
rection is not in the Z direction, the pattern is allowed to be included in the new
‘‘expertise’’ of the robot, the EKB. Patterns that do not satisfy expression (1)
and whose values are lower than the Flimit will only be used to recall previous
knowledge. The knowledge refinement process will continue in the NNC until
the end-condition is satisfied.

7. Results

Several tests were carried out to assess the performance of the NNC using
aluminium pegs with different cross-sectional geometry: circular, square and
radiused-square. The diameter of the circular peg was 2.5 cm and the side of
the square peg was also 2.5 cm. The dimensions of the non-symmetric part,
termed radiused-square because it was an square peg with one corner rounded
to a radius of 1.25 cm. Clearances between pegs and mating pairs were 0.1 mm.
The assembly was ended when 3/4 of the body of the peg were inside the hole.
This represented 50 motion steps in the )Z assembly direction. A typical as-
sembly operation is shown in Fig. 9.

The Fuzzy ARTMAP network parameters during experiments were set for
fast learning (learning rate¼ 1). The base vigilance qa had a low value since it
has to be incremented during internal operations. qmap and qb were set much
higher to make the network more selective creating as many clusters as pos-
sible.

The vigilance parameters used for the experiments reported in this article are
as follows:

qa ¼ 0:2 ðbase vigilanceÞ;

qmap ¼ 0:7;

qb ¼ 0:9:

Typical results on three different geometries are summarised in Table 1.
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At the start of the operation positional offsets were given as indicated in the
second column. During the first insertion, learning enabled (ON status), the
network learned three new patterns and this operation required 58 incremental
motions and only eight alignment motions. The learned patterns were Xþ, X�
and Y� as indicated in the comments field. The processing time for the whole
insertion was 5.17 s. This time considered only the processing of the patterns,
training and testing of the network. The actual insertion time was longer since
a delay of 1 s was added to avoid the transient stage after every incremental
motion. Considering this delay, the first assembly was accomplished in ap-
proximately 63.17 s. Subsequent assemblies were carried out and the number of
learned patterns decreased to only one. The processing time showed only small
fluctuations for insertions using the same offset. Table 1 also shows the ‘‘ex-
pertise’’ acquired by the robot during the operations. After nine insertions the
NNC had learnt 12 additional patterns. This implied that these patterns were
good enough to be learned. This EKB reinforced the prediction capability of
the network since the new patterns were actually generated by the particular
geometry of the parts, i.e. circular. The type of learned patterns at every in-
sertion is indicated in the comments field. With a larger offset (insertions 10–
14), the NNC learned only one additional pattern indicating that the network
had already acquired the necessary knowledge about the chamfer and used this
information effectively. As the starting point was further from the end-condi-
tion, the time to complete the insertion was proportionally longer. This is re-
flected in both the number of alignment motions and the total number of
actions. Another interesting result is that the NNC also predicted rotation

Fig. 9. Typical assembly operation.

102 I. Lopez-Juarez, M. Howarth / Information Sciences 145 (2002) 89–111



Table 1

Insertion results

Circular chamfered peg insertion

Insertion Offset ðdx; dy; dRzÞ
ðmm;mm; �Þ

Learning New patterns Alignment

motions

Total Motions Process. time

(s)

Comments

1 ð�0:8;�0:4; 0:0Þ ON 3 8 58 5.17 Xþ;X�; Y�
2 ð�0:8;�0:4; 0:0Þ ON 2 8 58 5.23 Xþ; Y�
3 ð�0:8;�0:4; 0:0Þ ON 0 4 54 4.70

4 ð�0:8;�0:4; 0:0Þ ON 1 4 54 5.00 Xþ
5 ð�0:8;�0:4; 0:0Þ ON 1 6 56 4.94 Xþ
6 ð�0:8;�0:4; 0:0Þ ON 2 6 56 5.18 Xþ; Y�
7 ð�0:8;�0:4; 0:0Þ ON 1 6 58 4.93 Xþ
8 ð�0:8;�0:4; 0:0Þ ON 1 6 56 5.09 Xþ
9 ð�0:8;�0:4; 0:0Þ ON 1 6 56 4.84 Xþ

10 ð�2:5;�2:5; 0:0Þ ON 1 14 64 5.47 Yþ (Incl. Rx�)
11 ð�2:5;�2:5; 0:0Þ ON 0 13 63 5.44

12 ð�2:5;�2:5; 0:0Þ ON 0 16 66 5.60

13 ð�2:5;�2:5; 0:0Þ ON 0 14 64 5.42

14 ð�2:5;�2:5; 0:0Þ ON 0 13 63 5.49

15 ð�2:5;�2:5; 0:0Þ OFF 0 25 85 7.35 Z+(14) Ry)(3)
16 ð�2:5;�2:5; 0:0Þ OFF 0 24 84 7.27 Z+(15) Ry)(3)

Square chamfered peg insertion

17 ð�2:5;�2:5; 0:0Þ ON 1 39 89 7.76 Xþ
18 ð�2:5;�2:5; 0:0Þ ON 12 41 91 8.17 Yþ; Y�;Xþ;X�
19 ð�2:5;�2:5; 0:0Þ ON 6 15 65 5.66 Xþ; Yþ; Y�
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Table 1 (continued)

Circular chamfered peg insertion

Insertion Offset ðdx; dy; dRzÞ
ðmm;mm; �Þ

Learning New patterns Alignment

motions

Total Motions Process. time

(s)

Comments

Radiused-square chamfered peg insertion

20 ð2:44; 0:19; 0Þ ON 3 14 64 5.56 X�; Y�
21 ð2:44; 0:19; 0Þ ON 5 17 67 5.95 X�; Y�;Xþ
22 ð�1:56; 2:38; 0Þ ON 2 22 72 6.17 Yþ

1
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about the X axis during insertion 10, which indicates that information from the
original PKB was still used if appropriate, as occurred in this situation. A
further test was undertaken during insertions 15–16 which will be discussed
later in Section 7.1. During square and radiused-square peg insertions the
offsets were given as indicated using the same PKB. In all cases, the NNC
performance was satisfactory.

7.1. Expertise test

A further test was conducted during insertions 15–16 using the PKB and the
incremental learning capability inhibited (OFF status). For comparison pur-
poses, the graphs corresponding to insertions 14 and 15 using the same offset
are shown in Figs. 10 and 11 respectively. In both figures, the upper graph
represents the force traces whereas the motion directions commanded by the
NNC are given in the lower graph. In the motion direction graph, the hori-
zontal axis corresponds with the Z) direction. Bars above the horizontal axis
represent linear alignments and below the horizontal axis represent angular
alignments. Despite that the offset was the same, the number of alignment
motions and insertion time were higher. With the learning inhibited, the robot
was not allowed to learn contact states within the chamfer hence the NNC
generated motions based only on its initial PKB. This resulted in motions that
produced an excessive fz. As a result, the NNC predicted a series of com-
pensatory movements in Z+ and Ry� to recover from these situations. The
robot was ultimately able to insert the workpiece, however the performance
was poorer in terms of alignment and consequently speed. It can clearly be
observed that the same operation with the same offset can be achieved more
efficiently and faster if the robot uses the EKB. In other words, the robot shows
its dexterity when it is allowed to use its expertise.

8. Discussions

8.1. Density of data and knowledge acquisition

The capability of generalisation and knowledge acquisition of the NNC has
been demonstrated. Patterns that reduce significantly the contact forces dur-
ing manipulations were acquired into the knowledge base and learnt. A
representative learning example was shown in Section 7 with the circular
chamfered insertion. In this example, the network was initially trained with
the PKB containing the 12 possible patterns associated with the robot�s
6 DOF. This information biased the initial learning by creating 12 categories
to allocate every possible motion direction. From these results, it was veri-
fied that subsequent patterns corresponding to contact states within the
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chamfer were effectively allocated into these categories. However, the pattern
population within certain categories produced high density of data within
regions in the feature space. For instance in X+ direction, which is explained
below.

During the chamfered circular peg insertion only four patterns were learnt.
These patterns corresponded to the Xþ, X�, Yþ and Y� (see Table 1). The
new patterns were valuable to speed up the insertion and to improve the

Fig. 10. Insertion with learning enabled.
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insertion trajectory as it was shown during the test. However, these patterns
were present within the data more than once and a total of 13 patterns were
acquired after 14 insertions which implied that certain categories were more
populated. This can be appreciated in Fig. 12 that shows the nature of learned
patterns.

As it can be seen, patterns belonging to the same category were very similar.
The patterns corresponding to the Xþ direction were allowed to be learnt eight

Fig. 11. Insertion with learning inhibited.
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times. This implied that the contact forces were significantly reduced in eight
occasions. This high number of patterns populated more the feature space in
that area, which is represented in Fig. 13.

For simplicity, only four major areas of action (Xþ, X�, Yþ and Y�) are
represented. Initially, the main groups are formed, this is represented by the
big black dots as illustrated at the beginning of the operation using what has
been termed PKB. The smaller dots represent additional patterns that have
been clustered within the same major region. As it is observed, the region
belonging to the Xþ direction was more populated than in the others. The
high density of data only implies that there are more data in the region and
the cost is memory space. However, since the criteria to learn new patterns
was the condition given by the expression Fafter < 0:1 � Fbefore, then as the
learning progresses, a reduction in contact forces is expected, as it was
demonstrated during the experiments, since the robot became more skillful.
Being this statement true, it is also true that the knowledge acquisition be-
comes more strict. This obeys to the fact that forces are smaller as the robot is
more skillful and from the above expression forces have also to be smaller to
be accepted into the EKB.

Also, as the robot�s dexterity improved, the trend in the number of patterns
that were accepted into the EKB decreased as it was shown in Table 1. The
above expression for allowing the patterns to be learnt resulted to be a criterion
to stop automatically the learning.

With this reasoning in mind, it can be demonstrated that the density does
not corrupt the selectivity of the NNC, but only affects the memory resources
to allocate the learned patterns.

Fig. 13. Data density.
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9. Conclusions

Results from our experiments demonstrate that industrial manipulators can
learn manipulative skills on-line using only contact force information. The
location of the parts was unknown and the information from the environment
minimal. The knowledge was enhanced according to the part geometry and
provided the required adaptation to the robot to learn a new assembly and
improve its skills from experience.

An alternative technique towards the creation of autonomous robots is the
use of neural network driven controllers as the NNC presented in this paper.
The novel method developed here is generic and can easily be built onto other
industrial robots.

Ongoing work is looking at improving the speed of the actual insertion times
by reducing the delay imposed in the communication link with the robot con-
troller and the study of components with different geometry. Additionally, future
directions have also been envisaged in terms of automating the generation of the
PKB, which will create complete autonomous robots for assembly. The core idea
is to embed into the robot system a ‘‘primitive reflex system’’ analogous to the
reflexes in a human being. Human reflexes are involuntary responses that occur
automatically in the presence of certain stimuli.Many of these reflexes are critical
for survival and unfold naturally as a part of the infant�s development. For in-
stance, the rooting reflex that causes newborn babies to turn their heads toward
things that touch their cheeks or, the Babinski reflex, which is the fanning out the
baby�s toes that happen when the outer edge of the sole of his foot is stroked.
These primitive reflexes are lost after few months of life, since new knowledge is
being acquired during development which allow babies to develop complex
motions. Similarly, a step further in robot development will be to allow the de-
velopment of the PKB based on these primitive reflexes. So far, the robot has not
been able to react automatically, but to recall from what it has been taught. The
idea is to allow it to react to completely new experiences and learn from them
building up the PKB. This step is feasible and the design will involve contact
localisation on the parts to be assembled based on their geometry and generate
the corresponding vector motion that diminish the constraint force. These re-
flexes are needed only at the very beginning of a new operation and once all the 12
primitive motions have been generated creating the PKB, then these reflexes will
not be necessary unless the robot needs to learn a completely new operation.
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